

TWIN LINE ITEM NR.: 101227

The LYNGSAA luminaire *Twin Line* is a combination of modern, stylish design and the latest LED technology.

The luminaire highlights itself with clear clean lines. The elegant design is combined with an extremely low consumption of power and with the option of dimming.

The Twin Line luminaire is waterproof (IP66/67). The luminaire is designed for indoors and outdoors application, even for harsh marine environments.

The luminaire is made of anodised aluminium, making it possible to create a durable, minimalistic design, ensuring a long lasting product. Which serves both as uplight and downlight.

TECHNICAL SPECIFICATIONS

Wattage:	2 x 4.7W LED	
Voltage:	100-240VAC	
Beam angle:	45° (Diffused)	
Dimensions:	Ø 60 x 300 mm	
IP rating:	IP66/67	
Warranty:	3 years	
Temp. range:	- 30 ° → 50 °C	
Weight:	1.8 kg	
Gland:	M16 x 1.5, Nickel-plated brass	
Cabling:	Cable not included	
Optional:	Other gland sizes and cabling can be included as per request	

LIGHT SPECIFICATIONS: KELVIN(K)/CRI, LUMEN(L)

	80 CRI	90 CRI
2700K	914L	768L
3000K	958L	800L
4000K	1030L*	NA

* Standard model

Technical specifications are calculated on data available from component manufacturers. Lumen/CRI/Kelvin are calculated before optical transmission